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Abstract. Properties of collinear and planar periodic orbits for the positronium negative ion are examined
with respect to the possibilities for semiclassical quantization. In contrast to other two-electron atomic
systems as helium and H− the relevant orbits for quantization are fully stable and permit a full torus
quantization. However, for lower excitations the area of stability in phase-space is too small for a reliable
torus quantization. Instead, a quasi-separability of the three-body system is used to apply effective one-
dimensional (WKB) quantization.

PACS. 36.10.-k Exotic atoms and molecules (containing mesons, muons, and other unusual particles) –
31.50.+w Excited states – 03.65.Sq Semiclassical theories and applications

1 Introduction

Electron correlation in two-electron systems, particularly
for doubly excited states, has been studied for a long
time within different frameworks [1]. Semiclassical meth-
ods provide a systematic approximation to the resonance
spectrum on the one hand side [2]. On the other side
the first term of the expansion of the Greens function
into periodic orbit contributions, namely the collinear so-
called asymmetric stretch (AS) orbit, leads to a simple
yet fairly accurate approximation of symmetrically ex-
cited (“intra-shell”) resonances with a clear physical pic-
ture [1,3]. Yet, an alternative description, the so-called
asynchronous model, has been developed by Simonović
and Grujić [4] in terms of planar orbits which are obvi-
ously higher dimensional objects in phase space. Due to
the quasi separability of the three-body Coulomb prob-
lem [1], they are nevertheless easily computed. It has been
shown that for atoms (helium [4]) and for negative ions
(H− [5]), i.e. for systems with a heavy positive core, the
asynchronous and the AS orbits yield roughly the same
resonance positions over a wide energy range upon semi-
classical quantization for excitation along the AS orbit.
This may be surprising on a first glance since for each reso-
nance, a different asynchronous orbit is quantized, while in
the AS approximation it is a single orbit which is respon-
sible for all quantized states. Consequently, resonances
which correspond to excitations perpendicular to the AS
orbit (so-called bending vibrations) are poorer represented
in the AS description, which is collinear only, compared
to the planar asynchronous orbits.

That the quantitative semiclassical results are rather
similar in both approaches despite the use of different or-
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bits could be attributed partially to the fact that all these
orbits have similar global properties, i.e., they are unsta-
ble.

Our motivation for the semiclassical investigation of
the positronium negative ion (Ps−) is driven by the ob-
servation that the AS orbit for this system is stable [6]. Are
all the asynchronous orbits underlying the resonances also
stable? As it will turn out not all of them are stable. Ps−
has been studied experimentally as well as theoretically,
where in the latter case emphasis was put on the question
what kind of energy spectrum this peculiar three-body
system with three particles of equal mass might possess.
Only recently, it was demonstrated that not only zero an-
gular momentum resonances are ordered quite similarly to
that of H− [7], but that also the ro-vibrational spectrum
as a whole exhibits similar features as the one of H− [8].
The quantum mechanical similarity makes it even more
interesting to see if it is preserved semiclassically, despite
the different stability properties of the underlying classical
orbits.

The paper is organized as follows: in Section 2 we
introduce the Hamiltonian and describe briefly how we
determine the classical orbits. In Section 3 we describe
the relevant classical configurations and discuss the quasi-
separability which is apparent from these orbits. Section 4
presents the semiclassical quantization procedure for the
different cases along with the results. The paper concludes
with a short summary in Section 5.

2 The Hamiltonian

In relative coordinates ri, pointing from the positron to
the two electrons, respectively, the Hamiltonian for Ps−
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Fig. 1. The AS PO for the Ps−, (a) in independent particle coordinates r1, r2, (b) in hyperspherical coordinates R, α and (c)
in molecular coordinates R = r12, µ = (r1−r2)/R. The full action of the AS orbit for Ps− (at E = −1) is S = S0 ≡ 7.2151 (then

S1 = S2 = 0 and S3 = S0). The corresponding winding numbers, evaluated from its monodromy matrix [14], are γ
(0)
1 = 1.11622,

γ
(0)
2 = 0.62978.

reads

H = p 2
1 + p 2

2 + p1 ·p2 −
1
r1
− 1
r2

+
1
r12

, (1)

where r12 = |r1 − r2| and pi are the momenta conjugated
to ri. Since equations of motion for Coulombic systems
are invariant under a continuous similarity transforma-
tion [9] it is sufficient to carry out all calculations at fixed
energy E = −1. For example, if S is the action along a
trajectory calculated at E = −1, the energy of the scaled
trajectory with action S′ is E′ = −(S/S′)2. This property
is particularly important for a semiclassical quantization
of Coulomb systems, because it significantly simplifies the
procedure.

The potential in (1) has attractive singularities at
ri = 0, i = 1, 2. Hence, a regularization of the equations of
motion must be performed before they can be solved nu-
merically. Here, we follow the procedure by Aarseth and
Zare (see Appendix), originally introduced to regularize
the three-body problem in celestial mechanics [10].

3 Quantum mechanically relevant classical
configurations

The two fundamental collinear periodic orbits (POs) of
a two-electron system are the symmetric stretch (SS) and
the asymmetric stretch (AS) POs. They represent in-phase
and out-of-phase motion, respectively. Beside these, there
is an infinite set of collinear periodic orbits which may
be considered as representing the coupling of the SS and
AS fundamental modes [11]. WKB quantization of the AS
periodic orbit in the case of helium gives reasonably accu-
rate results for the doubly-excited intra-shell resonances
(N = n), but for the states with N 6= n the contribution
of other periodic orbits is essential1. A comparison with
quantum probability distributions also suggests to asso-
ciate the AS orbit with the intra-shell resonances rather
than the SS [3,13].

1 For such states a more sophisticated semiclassical approach
is necessary, e.g. the Gutzwiller’s PO theory [12].

As we mentioned above, in contrast to the previously
considered two-electron atomic systems (He, H−), the co-
llinear AS orbit for Ps− and the orbits in its vicinity
are fully stable [6], i.e. there are three stable oscillatory
modes: the (principal) asymmetric stretch (AS) mode,
the symmetric stretch (SS), and the bending modes. The
bending mode has kinetic energy dominantly in the inter-
electronic angle ϑ12, in contrast to the collinear modes
for which ϑ12 = 180◦. In the case of angular momen-
tum L = 0 which we consider here, the motion is con-
fined to invariant tori in 6-dimensional phase-space. This
dynamics is conveniently described by hyperspherical co-
ordinates, i.e., with hyperradius R = (r1 + r2)1/2, hy-
perangle α = arctan(r2/r1) and the interelectronic angle
ϑ12 = ϑ1 − ϑ2 (here we use the same set as it is defined
for He and H−, but the canonically conjugated momenta
pR, pα and pϑ12 are different). In Figure 1, the AS PO for
the Ps− is shown in three different coordinate systems.
The three fundamental modes SS, AS, and bending, cor-
respond in hyperspherical coordinates to motion along R,
α and ϑ12 (perpendicular to the plane shown in Fig. 1), re-
spectively. This correspondence is, however, only approx-
imate which is reflected, for example, in small oscillation
of the hyperradius for the AS orbit (see Fig. 1b), although
in this case, neither the SS-mode nor the bedding modes
are excited.

Trajectories in the vicinity of the collinear AS periodic
orbit are characterized by two winding numbers defined by
the ratios

γ1 =
ω1

ω3
, γ2 =

ω2

ω3
, (2)

where ω1, ω2 and ω3 are the characteristic frequencies of
the bending, SS and AS modes, respectively. They, actu-
ally, label the invariant tori on which these stable trajecto-
ries lie. Apart from the frequencies, each torus is defined
by three action integrals Ii along topologically distinct
paths (they need not necessarily be classical trajectories)
with

Ii =
1

2π

∮
ci

(p1 ·dr1 + p2 ·dr2), i = 1, 2, 3, (3)
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Fig. 2. The stability island around the AS collinear PO for Ps− in the AS–SS symmetry plane visualized by the Poincaré
surface of section {(R, pR)|α = π/4, pα > 0}: (a) 17 orbits x2 ∈ (2.084, 2.004), t ≤ 5 000 (dotted line is the R-component of the
AS PO in phase space); (b) 82 orbits x2 ∈ (2.084, 2.003), t ≤ 500.

where the paths c1, c2, c3 are along bending, SS and AS
modes, respectively. Since the full action accumulated in
time t along a trajectory on the torus is S(t) =

∑
i ωiIi,

the action accumulated over one period of the AS-mode
T3 is

S ≡ S(T3) = γ1S1 + γ2S2 + S3, (4)

where Si = 2πIi. Hence, alternatively, each torus can be
labeled by three actions S, S1, S2. Moreover, if all tra-
jectories are calculated at fixed energy E = −1, then
S = S(S1, S2) and the corresponding (scaled) tori are la-
beled by two actions S1 and S2, which tell us how far
away from the AS the trajectories on these tori are in
phase space. These properties will be used below for the
semiclassical quantization of the system.

There exist, however, invariant subspaces of the full
phase-space where the three-dimensional motion essen-
tially reduces to two degrees of freedom (so-called sym-
metry planes [15]). If we consider the bound motion with
two of the three oscillatory modes excited, the invari-
ant subspaces are: (i) AS–SS, (ii) AS-bending and (iii)
SS-bending. The AS–SS subspace represents collinear or-
bits (S1 = 0) with the AS-radial motion as the princi-
pal mode and small excitations of the SS-mode (i.e. the
collinear configuration with electrons on the opposite sides
of the positron, denoted by e−Ze− in [15]). In the AS-
bending subspace the orbits are planar and have been
named “asynchronous orbits” [4,5]. They have no excita-
tion in the SS-mode (S2 = 0). Finally, the third subspace
is the so-called Wannier ridge [11] containing the orbits
with r1 = r2 at all times (then S3 = 0). Since the motion
is stable in the vicinity of the AS PO, the cases of interest
are (i) and (ii).

3.1 The collinear configurations (AS–SS subspace)

Stable orbits for the Ps− system within the AS–SS sub-
space are computed (at total energy E = −1 and total
angular momentum L = 0) starting from initial collinear
configuration with electron-positron distances xin

1 = 0,
xin

2 ∈ (2.00236, 2.08425). The value xin
2 = 2.08425 corre-

sponds to the AS PO, whereas for xin
2 < 2.00236 the orbits

become chaotic. As pointed out in [6], the area of stability
for these SS-excitations is rather small (∆R/R < 0.05).
This can be seen from Figure 2, where the stability is-
land around the AS PO in the AS–SS subspace is made
visible by the help of the Poincaré surface of section
{(R, pR)|α = π/4, pα > 0}. For irrational tori within this
subspace (γ2 irrational) the actions S2 are the areas en-
closed by the corresponding curves in the section. The
area enclosed by the boundaries of the stability island is
Smax

2 ≈ 0.009.

3.2 The asynchronous configurations (AS-bending
subspace)

These configurations are 2-dimensional extensions of the
1-dimensional collinear AS configuration, obtained by in-
cluding the bending mode but without any SS-motion (i.e.
S2 = 0). However, small oscillations of the hyper-radiusR
exist nevertheless due to the coupling of the motion in α
and ϑ12. The asynchronous orbits for the Ps− system can
be computed (at E = −1 and L = 0) starting with initial
momenta (pin

1 , pin
2 ) perpendicular to the initial collinear

configuration with electron-positron distances (xin
1 , xin

2 )
connected by the full lines in Figure 3. Note that bifur-
cation points appear around the values xin

1 = 0.115 and
xin

1 = 0.217 rendering the orbits in its vicinity chaotic.
The orbits also become highly chaotic for xin

1 > 0.225.
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Fig. 3. The stable area of the initial configuration space for
Ps−. The initial electron-positron distances (xin

1 , xin
2 ) for the

asynchronous orbits from the AS-bending subspace are con-
nected by full lines. The configuration is fully stable in the wide
range from xin

1 = 0 (for AS) to xin
1 = 0.225 (maximal bending

amplitude), except around xin
1 = 0.115 and xin

1 = 0.217.

In contrast to the SS-excitations, the stable area
of phase space for bending oscillations is not small
(π/2 < ϑ12 < 3π/2 and Smax

1 ≈ 1.73) as can be seen
from Figure 4, showing the Poincaré surface of section
{(ϑ12, pϑ12)|α = π/4, pα > 0} for asynchronous orbits with
initial positions xin

1 ∈ (0, 0.22). The POs with (rational)
frequency ratios γ1 composed of small integers can be rec-
ognized by the small number of fixed points appearing in
the section. Some of these POs are shown in Figure 5. The
winding numbers γ2 of these POs can be obtain roughly
from the Fourier transform of the R-values at the intersec-
tion of the orbit with the surface α = π/4, pα > 0. More
accurate values can be extracted from the monodromy
matrix [14] of the corresponding POs.

Since for these configurations S2 = 0, the full action
(4) calculated at E = −1 can be expressed as a function of
S1 only, i.e., S = S(S1) and similarly γ1,2 = γ1,2(S1). We
have determined how the quantities S1, S, γ1 and γ2 for
the asynchronous orbits depend on the initial coordinate
xin

1 by fitting numerical data2 to the following polynomials

S1 = a xin
1 , (see Fig. 6)

S = S0 +
4∑
i=1

bi(xin
1 )i, (5)

γ1,2 = γ
(0)
1,2 +

4∑
i=1

c
(1,2)
i (xin

1 )i,

with the fitted coefficients summarized in Table 1.
2 For S1 we have used the areas enclosed by the curves cor-

responding to quasi-periodic orbits in the surface of section in
Figure 4, whereas for S and γ1,2 we have fitted the values for
the POs.

Table 1. Coefficients for the fit of (5) (in atomic units at
E = −1).

i a bi c
(1)
i c

(2)
i

1 7.96146 −0.002961 0.422553 0.468802

2 – 1.900638 0.646674 2.551696

3 – 0.320787 1.317801 −16.676530

4 – 27.094104 6.141925 94.736750

The motion out of this subspace (i.e. the full three-
dimensional) remains stable for small amplitudes of SS-
excitations. This stable area changes in size (see Fig. 3)
depending on the bending amplitude. For vanishing bend-
ing amplitude the corresponding stability island is shown
in Fig. 2). Hence, the intra-shell (symmetrically-excited)
states can be expected to be classically represented by reg-
ular motion in Ps− since they have no SS-mode excitation
(apart from zero-point motion). To obtain the spectrum
one can apply torus quantization in contrast to the cases
of He and H−, where the corresponding classical orbits are
unstable.

3.3 Near-separability and molecular-like behaviour

Since the size of the stable area around the AS orbit in
the SS-direction is small, it follows that for all periodic
orbits belonging to this area the hyperradius R changes
only slightly. Taking the hyperradius as a measure for the
size of a few-body system, we can conclude that the size of
Ps− in this area of phase-space is approximately constant.
However, this does not imply a static configuration, rather
intensive out-of-phase dynamics of the two electrons and
the positron, from which in fact the stability of the con-
figuration originates. Beside the hyperradius, the inter-
electronic distance R = r12 appears as an approximate
constant (see Fig. 1c). This allows us to treat the collec-
tive motion of the three particles in Ps− similarly to H+

2 as
it has been shown by the good agreement of full quantum
calculations with the result from an adiabatic approxima-
tion (with R as the adiabatic variable) [7]. Moreover, the
eigenfunctions are quasi-separable in prolate spheroidal
coordinates λ, µ = (r1 ± r2)/R, φ (azimuthal angle) and
can be described by the corresponding molecular-orbital
(MO) quantum numbers nλ, nµ, m.

Here we demonstrate that the asynchronous orbits are
the classical counterpart since they exhibit this quasi-
separability as can be seen from Figures 5a–5f where
the periodic orbits from Figures 5A–5F are shown in
spheroidal coordinates.

Since the motion along λ (bending mode) and µ (AS-
mode) is almost decoupled, the action S1 should be ap-
proximately equal to the action of the (one-dimensional)
λ-motion during two mean λ-periods

S1 ≈ 2
Sλ(T )
kλ

≡ 2Sλ, (6)
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Fig. 4. Poincaré surface of section {(ϑ12, pϑ12)|α = π/4, pα > 0} for asynchronous Ps− configuration: (a) 23 orbits (x1 ∈ (0, 0.22),
t ≤ 10 000); (b) 221 orbits (x1 ∈ (0, 0.22), t ≤ 200).
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Fig. 5. (A–F) The asynchronous periodic orbits of the Ps− (E = −1, L = 0) in the real space. The orbits are classified by the
frequency ratio (winding number) of the bending and AS modes: γ1 = 1.11622 (A), 9/8 (B), 8/7 (C), 7/6 (D), 6/5 (E), 5/4
(F). (a–f) Classical periodic orbits from the previous figure given in spheroidal coordinates. Using relation ωλ/ωµ = 2γ1 for the
latest five orbits, it can be seen that γ1 = 9/8 (b), 8/7 (c), 7/6 (d), 6/5 (e), 5/4 (f).

where Sλ(T ) =
∫

PO pλ dλ and kλ is the number of oscilla-
tions performed by the λ-coordinate in the full period T of
the corresponding PO3. The comparison between S1 and
Sλ in Figure 6 confirms the near-separability hypothesis.
The near-separability, both of the wave-functions and the
underlying classical dynamics, was demonstrated before
for the intra-shell states of two-electron atoms [16,17]. For
Ps−, this separability provides an alternative way to per-

3 Note that ωλ = 2ω1 since the motion in λ is doubly degen-
erate.

form the semiclassical quantization of the asynchronous
configurations by applying the quantization conditions to
the actions Sλ and S instead to S1 and S to be discussed
in the next section. Although this approach should be
more approximate than the torus quantization almost the
same results are obtained in the stable area due to (6).
Moreover, it can be extended to the nearby chaotic area,
because such weakly unstable configurations preserve the
near-separability.
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Fig. 6. The action S1 (circles), calculated from the area en-
closed by the curves from Figure 4a, for quasi-periodic mo-
tions on tori in the AS-bending subspace, and the ϑ12 and λ
components of action integrals along the asynchronous POs
accumulated during single ϑ12 and double λ mean periods –
Sϑ12 (triangles) and 2Sλ (squares), respectively. The actions
are shown as functions of the initial values xin

1 for asynchronous
trajectories lying on different tori. Due to the near-separability
of the configuration in the prolate spheroidal coordinates, the
values 2Sλ almost coincide with the corresponding values for
the action variable S1 (Eq. (5)).

4 Semiclassical quantization

Semiclassical torus quantization of the regular phase-space
area of Ps− requires to calculate the action integrals (3)
and to apply the EBK quantum conditions

I ′1 = 2 (n1 + 1/2), I ′2 = n2 + 1/2, I ′3 = n3 + 1/2. (7)

The semiclassical quantum numbers n1, n2, n3 are the
numbers of nodes along the bending (doubly degenerate),
SS and AS directions. Therefore, they coincide with the
MO quantum numbers nλ, ν and nµ, respectively (here
m = 0 since L = 0), and the action (4) is quantized ac-
cording to

S′ = 2π[nµ + 1/2 + γ1(2nλ + 1) + γ2(ν + 1/2)]. (8)

The quantized energies of the system can be obtained by
using the scaling relation E′ = −(S/S′)2, which yields

Enµ,nλ,ν = − (S/2π)2

[nµ + γ1(2nλ + 1) + γ2(ν + 1/2)]2
· (9)

In this formula the values for S and γ1,2, for given quan-
tum numbers, can be determined from the relations

S

S1
= γ1 +

nµ + 1/2 + γ2(ν + 1/2)
2nλ + 1

,
S1

S2
=

2nλ + 1
ν + 1/2

,

(10)

which follow from S/Si = S′/S′i. In order to solve (10),
we have to know how S and γi depend on S1 and S2.

Table 2. The action S0 and the winding numbers γ0
1 , γ

0
2 of

the collinear AS orbit, along with the effective central-particle
charge Zeff and the quantum defect µ which result from its
semiclassical quantization (see Eqs. (11, 12)).

Sys. S0 γ
(0)
1 γ

(0)
2 Zeff µ

He 22.986 1.0785 – 1.8292 A/4−0.2893

H− 10.390 1.1712 – 0.8268 A/4−0.3356

Ps− 7.2151 1.1162 0.6298 0.5742 A/4−0.2156

4.1 The intra-shell resonances associated
with the near-collinear AS configuration

These are the resonances which have excitation only along
the AS-orbit, i.e. S � S1, S2, or in terms of quantum
numbers nµ 6= 0, but nλ = ν = 0. Although the quantum
numbers for excitation perpendicular to the AS-orbit are
zero, the zero point motion never renders the classical ac-
tions S1 and S2 exactly zero. Only in the asymptotic limit
N � 1, the action S along the orbit is so much larger than
S1 and S2 that we have practically S = S0 and similarly
we may approximate γ1 = γ

(0)
1 and γ2 = γ

(0)
2 , where the

sub/superscript zero denotes the values for the AS PO.
Then equation (9) reduces to a double Rydberg for-

mula with principle quantum number N for both elec-
trons,

EN = − Z2
eff

(N − µ)2
, (11)

where Zeff = S0/4π and

µ = [1− γ(0)
1 + (A− γ(0)

2 )/2]/2 (12)

is the semiclassical expression for the quantum defect (see
Tab. 2). It results from the decomposition of even and odd
nµ according to nµ = 2N − 1 − (A + 1)/2 (see e.g. [18])
where A = 1 for 1Se symmetry denoting an antinode at
the line r1 = r2 while A = −1 is for 3Se with a nodal line
at r1 = r2 [19]. Note that equation (12) differs from the
one for He and H− since for the latter ones µ = [(A +
1)/2− γ(0)

1 ]/2 due to the instability of the SS-mode.
In the light of equation (11) the energy parameterized

as (−ENN2)−1/2 becomes a linear function of 1/N with
different slope depending on A. This is shown in Figure 7
by full lines for the cases of helium and Ps−. Towards
the three-body breakup threshold 1/N → 0 the quantum-
mechanical energies (parameterized as (−ENN2)−1/2) ap-
proach these lines which demonstrates the applicability of
the collinear AS model for N � 1.

For smaller N , the results from the AS collinear model
deviate significantly from the exact quantum-mechanical
values. Clearly, when N decreases, the zero-point motion
of the other two modes becomes important compared to
the AS-motion and thus the AS model is not a good ap-
proximation. In this case, one might expect that the semi-
classical results can be improved if we consider the trajec-
tories winding around the AS, i.e. if we take into account



N.S. Simonović and J.M. Rost: The positronium negative ion: Classical properties and semiclassical quantization 161

0 0.25 0.5 0.75 1
1/N

0.5

0.6

0.7

0.8

0.9

(−
E

N
   

)

0 0.25 0.5 0.75 1
1/N

1.7

1.8

1.9

2

2.1

2.2

2.3

(−
E

N
   

)

2
−

1/
2

−
1/

2
2

(a) (b)

Fig. 7. Energies, parameterized as (−ENN2)−1/2, of the lowest (Kmax) singlet (open symbols) and triplet (full symbols) resonant
states in each manifold N , as functions of 1/N for: (a) helium and (b) Ps−. The values from the exact quantum-mechanical
calculations are represented by circles. The semiclassical results obtained using torus and WKB quantization are labeled by
squares and triangles, respectively. The semiclassical values within the AS collinear model are shown by full lines, whereas the
dashed lines correspond the latest model for Ps−, treated analogously as helium (whose radial motion is unstable), i.e. taking
formally γ2 = 1.

that S, γ1 and γ2 depend on the actions S1, S2. How-
ever, the stable phase-space area in the SS-direction is very
small as we have mentioned above, Smax

2 ≈ 0.009 if S1 = 0.
A simple consideration using (10) with nλ = ν = 0 reveals
that the states related to the stable classical motion are
those with N > 200. This criterion for torus quantization,
however, is not so strong in practice. The semiclassical re-
sults are acceptable already for N ∼ 10 (see Tabs. 3 and
4) which is a consequence of the fact that the classical mo-
tion slightly outside of the stable area is still correlated in
a similar way as inside, and the actions in (9) and (10)
can be extrapolated to the nearby chaotic area.

4.2 The intra-shell resonances associated
with off-collinear configurations

In the case of symmetrically excited states (ν = 0) with
nλ > 0, the action S1 is increasing (see Eq. (10)) and the
AS collinear model is not a satisfying approximation. We
have to go back to a larger phase space which is only re-
duced from the full phase space to planar configurations in
the AS-bedding subspace (note that S2 ≈ 0 still holds by
specifying intrashell states with ν = 0). The parameters
for the remaining asynchronous POs can be expressed in
terms of S1 only (see Eq. (5)) and the semiclassical for-
mula for the energies of symmetrically excited Ps− reads

Enµ,nλ = − (S/2π)2

[nµ + (1 + γ2)/2 + γ1(2nλ + 1)]2
, (13)

where the values S, γ1 and γ2 are evaluated from the re-
lation

S

S1
= γ1 +

nµ + (1 + γ2)/2
2nλ + 1

, (14)

using the empirically obtained functions S = S(S1), γ1 =
γ1(S1), γ2 = γ2(S1) given implicitly by (5).

The size of the stable phase-space area restricts the
applicability of equation (13). The range of stability in
terms of relevant actions in (14) is given by

S(Smax
1 )

Smax
1

− γ1(Smax
1 ) ≈ 3 (15)

and for N � 1 we get from (13) the inequality nµ/2nλ >
3. The criterion resumes a more accessible form if cast into
group-theoretical quantum numbers4, where it reads

K > N/2 (N � 1). (16)

This means that the semiclassical quantization with (13)
covers roughly one quarter of the states in each manifold
N for which K can have different values (−N + 1,−N +
3, ..., N − 3, N − 1).

As in the collinear case better results are obtained for
higher values of N (Tabs. 3 and 4) since then it is less of
an approximation to neglect the action of the zero point
motion in the SS-mode.

4.3 WKB-quantization based on quasi-separability

For the ground and lower symmetrically-excited states of
Ps−, it is better to perform a WKB quantization based on
the near-separability approximation than a torus quanti-
zation. This has been done for the unstable orbits of he-
lium and H−. In these cases the radial motion is more
unstable than in Ps− and it is not possible to treat the
AS and SS modes independently (the winding number γ2

is not defined). If we regard the region of stability as too
small for quantization in Ps− (see the discussion at the

4 For relations between the MO and the group-theoretical
quantum numbers, see [18].
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Table 3. Energy levels for 1Se (m = 0, A = +1, T = 0) intra-shell (ν = 0, n = N) resonant states of Ps−, classified using
MO and correlation quantum numbers. Semiclassical results obtained using the collinear AS and the planar asynchronous
configuration (torus and WKB quantization) are given together with exact quantum mechanical values and those obtained
within adiabatic molecular approximation [7]. The values denoted by an asterix are obtained extrapolating the action variable
for bending mode S1 slightly out of the stable area.

(nµ, nλ) N K ESC(AS) ESC(torus) ESC(WKB) EQM(exact) EQM(MA)

(0, 0) 1 0 −0.3536 −0.2486 −0.2620 −0.2568

(2, 0) 2 1 −0.8533 × 10−1 −0.7702 × 10−1∗ −0.7557 × 10−1 −0.7603 × 10−1 −0.7512 × 10−1

(4, 0) 3 2 −0.3748 × 10−1 −0.3628 × 10−1 −0.3483 × 10−1 −0.3534 × 10−1 −0.3511 × 10−1

(2, 1) 3 0 −0.3471 × 10−1 −0.2762 × 10−1 −0.2774 × 10−1 −0.2745 × 10−1

(6, 0) 4 3 −0.2096 × 10−1 −0.2062 × 10−1 −0.1989 × 10−1 −0.2021 × 10−1 −0.2016 × 10−1

(4, 1) 4 1 −0.1979 × 10−1 −0.1748 × 10−1 −0.1731 × 10−1 −0.1719 × 10−1

(8, 0) 5 4 −0.1337 × 10−1 −0.1324 × 10−1 −0.1283 × 10−1 −0.1303 × 10−1 −0.1303 × 10−1

(6, 1) 5 2 −0.1277 × 10−1 −0.1203 × 10−1∗ −0.1177 × 10−1 −0.1172 × 10−1 −0.1169 × 10−1

(4, 2) 5 0 −0.1220 × 10−1 −0.9945 × 10−2 −0.9824 × 10−2 −0.981× 10−2

(10, 0) 6 5 −0.9263 × 10−2 −0.9201 × 10−2 −0.8957 × 10−2 −0.9086 × 10−2 −0.9107 × 10−2

(8, 1) 6 3 −0.8913 × 10−2 −0.8455 × 10−2∗ −0.8396 × 10−2 −0.8414 × 10−2 −0.8384 × 10−2

(6, 2) 6 1 −0.8581 × 10−2 −0.7506 × 10−2 −0.7438 × 10−2 −0.7390 × 10−2

(12, 0) 7 6 −0.6794 × 10−2 −0.6762 × 10−2 −0.6604 × 10−2 −0.6717 × 10−2

(10, 1) 7 4 −0.6573 × 10−2 −0.6353 × 10−2 −0.6273 × 10−2 −0.6284 × 10−2

(8, 2) 7 2 −0.6363 × 10−2 −0.5784 × 10−2

(14, 0) 8 7 −0.5196 × 10−2 −0.5177 × 10−2 −0.5069 × 10−2 −0.5156 × 10−2

(12, 1) 8 5 −0.5047 × 10−2 −0.4925 × 10−2 −0.4858 × 10−2

(10, 2) 8 3 −0.4905 × 10−2 −0.4606 × 10−2∗ −0.4562 × 10−2

(16, 0) 9 8 −0.4101 × 10−2 −0.4090 × 10−2 −0.4013 × 10−2 −0.4081 × 10−2

(14, 1) 9 6 −0.3997 × 10−2 −0.3923 × 10−2 −0.3870 × 10−2

(12, 2) 9 4 −0.3897 × 10−2 −0.3619 × 10−2∗ −0.3678 × 10−2

(18, 0) 10 9 −0.3319 × 10−2 −0.3312 × 10−2 −0.3255 × 10−2 −0.3101 × 10−2

(16, 1) 10 7 −0.3243 × 10−2 −0.3196 × 10−2 −0.3154 × 10−2

(14, 2) 10 5 −0.3170 × 10−2 −0.3035 × 10−2 −0.3023 × 10−2

(20, 0) 11 10 −0.2742 × 10−2 −0.2737 × 10−2 −0.2694 × 10−2 −0.2738 × 10−2

(18, 1) 11 8 −0.2684 × 10−2 −0.2653 × 10−2 −0.2620 × 10−2 −0.2634 × 10−2

(16, 2) 11 6 −0.2629 × 10−2 −0.2543 × 10−2 −0.2525 × 10−2

(22, 0) 12 11 −0.2302 × 10−2 −0.2299 × 10−2 −0.2266 × 10−2 −0.2302 × 10−2

(20, 1) 12 9 −0.2258 × 10−2 −0.2236 × 10−2 −0.2210 × 10−2

(18, 2) 12 7 −0.2216 × 10−2 −0.2157 × 10−2 −0.2140 × 10−2

(24, 0) 13 12 −0.1961 × 10−2 −0.1958 × 10−2 −0.1932 × 10−2 −0.1962 × 10−2

(22, 1) 13 10 −0.1926 × 10−2 −0.1911 × 10−2 −0.1889 × 10−2

(20, 2) 13 8 −0.1893 × 10−2 −0.1851 × 10−2 −0.1836 × 10−2

end of Sect. 4.1) then, as in previous work for truly un-
stable orbits, instead of (13, 14) we should use

Enµ,nλ = − (S/2π)2

[nµ + 1 + γ1(2nλ + 1)]2
, (17)

S

2Sλ
= γ1 +

nµ + 1
2nλ + 1

· (18)

Equations (17, 18) formally coincide with (13, 14) if we put
S1 = 2Sλ and γ2 = 1. From Table 3 it can be seen that,

for smaller N , the WKB results for singlet states are in
better agreement with quantum-mechanical results than
those obtained using (13, 14). Moreover, the energy of the
ground state is roughly correct. Contrarily, in the triplet
case (Tab. 4) the off-collinear results appear even worse
than those within the AS model. Note, however, that the
energies in a manifold (K = −N + 1, ..., N − 1) are such
as if they were shifted upwards by a constant (a simi-
lar effect has been observed for helium triplet states [4]).
This indicates that the inaccuracy comes rather from an
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Table 4. Same as in Table 3 but for 3Se (m=0, A=−1, T = 0) intra-shell (ν=0, n=N + 1) resonant states.

(nµ, nλ) N K ESC(AS) ESC(torus) ESC(WKB) EQM(exact) EQM(MA)

(3, 0) 2 1 −0.5423 × 10−1 −0.5149 × 10−1 −0.4948 × 10−1 −0.6354 × 10−1 −0.6328 × 10−1

(5, 0) 3 2 −0.2745 × 10−1 −0.2684 × 10−1 −0.2582 × 10−1 −0.2937 × 10−1 −0.2919 × 10−1

(7, 0) 4 3 −0.1653 × 10−1 −0.1632 × 10−1 −0.1579 × 10−1 −0.1710 × 10−1 −0.1701 × 10−1

(5, 1) 4 1 −0.1570 × 10−1 −0.1423 × 10−1 −0.1586 × 10−1 −0.1575 × 10−1

(9, 0) 5 4 −0.1104 × 10−1 −0.1095 × 10−1 −0.1064 × 10−1 −0.1124 × 10−1 −0.1119 × 10−1

(7, 1) 5 2 −0.1058 × 10−1 −0.9771 × 10−2∗ −0.9876 × 10−2 −0.1053 × 10−1 −0.1043 × 10−1

(11, 0) 6 5 −0.7886 × 10−2 −0.7842 × 10−2 −0.7647 × 10−2 −0.7947 × 10−2

(9, 1) 6 3 −0.7610 × 10−2 −0.7301 × 10−2 −0.7221 × 10−2 −0.7479 × 10−2

(7, 2) 6 1 −0.7348 × 10−2 −0.6571 × 10−2 −0.6965 × 10−2

(13, 0) 7 6 −0.5915 × 10−2 −0.5890 × 10−2 −0.5761 × 10−2 −0.5942 × 10−2

(11, 1) 7 4 −0.5735 × 10−2 −0.5573 × 10−2 −0.5498 × 10−2 −0.5638 × 10−2

(15, 0) 8 7 −0.4600 × 10−2 −0.4585 × 10−2 −0.4495 × 10−2 −0.4614 × 10−2

(13, 1) 8 5 −0.4476 × 10−2 −0.4382 × 10−2 −0.4322 × 10−2

(11, 2) 8 3 −0.4357 × 10−2 −0.4156 × 10−2∗ −0.4086 × 10−2

(17, 0) 9 8 −0.3679 × 10−2 −0.3670 × 10−2 −0.3605 × 10−2 −0.3688 × 10−2

(15, 1) 9 6 −0.3591 × 10−2 −0.3532 × 10−2 −0.3485 × 10−2

(13, 2) 9 4 −0.3505 × 10−2 −0.3328 × 10−2∗ −0.3327 × 10−2

(19, 0) 10 9 −0.3010 × 10−2 −0.3004 × 10−2 −0.2955 × 10−2 −0.3016 × 10−2

(17, 1) 10 7 −0.2944 × 10−2 −0.2906 × 10−2 −0.2868 × 10−2

(15, 2) 10 5 −0.2880 × 10−2 −0.2774 × 10−2 −0.2758 × 10−2

(21, 0) 11 10 −0.2508 × 10−2 −0.2503 × 10−2 −0.2466 × 10−2 −0.2513 × 10−2

(19, 1) 11 8 −0.2458 × 10−2 −0.2431 × 10−2 −0.2402 × 10−2 −0.2431 × 10−2

(17, 2) 11 6 −0.2409 × 10−2 −0.2338 × 10−2 −0.2321 × 10−2

(23, 0) 12 11 −0.2121 × 10−2 −0.2118 × 10−2 −0.2089 × 10−2 −0.2126 × 10−2

(21, 1) 12 9 −0.2082 × 10−2 −0.2064 × 10−2 −0.2040 × 10−2 −0.2062 × 10−2

(19, 2) 12 7 −0.2045 × 10−2 −0.1995 × 10−2 −0.1979 × 10−2

inadequate treatment of the chaotic radial motion than
of the bending mode. The results by Wintgen et al. [6]
for collinear helium support this conjecture. Semiclassical
values for energies of this system obtained within the AS
model deviate from the quantum-mechanical results more
for triplet states than for singlet states. However, they
can be significantly improved by including contributions
of other collinear POs, using a variant of Gutzwiller’s PO-
theory [12] (the so-called “cycle-expansion” [3,6]), which
is a more accurate semiclassical approach to chaotic mo-
tion.

5 Conclusions

In an exhaustive study of collinear and planar orbits in
Ps−, relevant for a semiclassical quantization of symmet-
rically excited states we have shown that that the planar,
so-called asynchronous, orbits describe the off-collinear
symmetrically excited (“intra-shell”) resonances very well.
They are the only simple classical objects known to repre-
sent these quantum resonances. In contrast to He or H−,

which have been studied previously, some of these orbits
are stable. This fact allowed us to apply torus quantization
and to study the role of stability for the quantization.

Particularly, the highly symmetrically-excited resonant
states of Ps− with K = N/2, ..., N − 1 are related to the
fully stable classical motion. This is confirmed by the fact
that for K = Kmax the semiclassical torus quantization
which includes the contributions of all three stable modes
(i.e. both winding numbers γ1 and γ2) yields results in bet-
ter agreement with the quantum values than a semiclas-
sical quantization assuming chaotic radial motion (where
only γ1 exists), as can be seen in Figure 7.

However, the small stability region around the asyn-
chronous orbits in the symmetric stretch mode does not
allow one to take efficiently advantage of this better clas-
sical description for quantization of the lowest intra-shell
resonances compared to a description by the asymmet-
ric stretch collinear orbit. Rather, it has turned out that
the quasi-separability of the system in spheroidal coordi-
nates is more important to obtain good semiclassical en-
ergies despite the presence of unstable classical motion.
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Assuming quasi-separability one can use simply WKB
quantization.

For higher excitation, we have obtained good agree-
ment between the results from the torus quantiza-
tion and from the WKB quantization based on the
near-separability in molecular coordinates. This confirms
the validity of the near-separability hypothesis and the
molecular-like description for two-electron systems.

In contrast to the collinear asymmetric stretch, dif-
ferent planar orbits are used for different resonances. The
properties of these orbits may change as a function of exci-
tation energy. It could be interesting to see in future work
if a change of these properties is reflected in a changing
behavior of other observables (dipole excitation etc.) in
the corresponding quantum states.

Appendix

To regularize the planar motion of the system given by
Hamiltonian (1) we follow the procedure by Aarseth and
Zare [10] and introduce regularized coordinates and mo-
menta Qk, Pk, k = 1, 2, 3, 4 by means of the transforma-
tions

x1 = Q2
1 −Q2

2, y1 = 2Q1Q2,

x2 = Q2
3 −Q2

4, y2 = 2Q3Q4,

px1 =
Q1P1 −Q2P2

2R2
1

, py1 =
Q2P1 +Q1P2

2R2
1

,

px2 =
Q3P3 −Q4P4

2R2
2

, py2 =
Q4P3 +Q3P4

2R2
2

, (A.1)

where R2
1 = r1 = Q2

1 +Q2
2, R2

2 = r2 = Q2
3 + Q2

4, and the
new time variable τ by the transformation

dt = R2
1R

2
2 dτ. (A.2)

Then, the singularities in the Hamiltonian (1), where the
old variables (ri, pi, t) are expressed in terms of the new
ones (Qk, Pk, τ), can be removed by defining a new Hamil-
tonian

H̃ = R2
1R

2
2(H −E) ≡ 0, (A.3)

where E is the total energy of the system. With such
transformed Hamiltonian H̃ the corresponding equa-
tions of motion preserve the canonical form and they are

regular when R1 → 0 or R2 → 0. The new Hamiltonian
has the explicit form

H̃ = [R2
2P2

1 +R2
1P2

2 + (Q2
1P

2
1 −Q2

2P
2
2 )(Q2

3P
2
3 −Q2

4P
2
4 )

+ (Q2
2P

2
1 +Q2

1P
2
2 )(Q2

4P
2
3 +Q2

3P
2
4 )]/4

−R2
1 −R2

2 +R2
1R

2
2(R−2

12 −E) ≡ 0, (A.4)

where R2
12 = r12 = [(Q2

1 − Q2
2 − Q2

3 + Q2
4)2 + 4(Q1Q2 −

Q3Q4)2]1/2, P1 = (P1, P2) and P2 = (P3, P4). The limit
R12 → 0 is still singular. However, this is not relevant since
this kind of collisions (electron-electron) never appears for
relevant trajectories.
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5. N.S. Simonović, J. Phys. B: At. Mol. Opt. Phys. 33, L85

(2000).
6. D. Wintgen, K. Richter, G. Tanner, Chaos 2, 19 (1992).
7. J.M. Rost, D. Wintgen, Phys. Rev. Lett. 69, 2499 (1992).
8. I.A. Ivanov, Y.K. Ho, Phys. Rev. A 61, 2501 (2000).
9. L. Landau, E. Lifshitz, Mechanics (Nauka, Moscow, 1988),

p. 35 (in Russian).
10. S.J. Aarseth, K. Zare, Celest. Mech. 10, 185 (1974).
11. S. Watanabe, Phys. Rev. A 36, 1566 (1987).
12. M.C. Gutzwiller, Chaos in Classical and Quantum Me-

chanics (Springer, New York, 1990).
13. J.M. Rost, R. Gersbacher, K. Richter, J.S. Briggs, D.

Wintgen, J. Phys. B 24, 2455 (1991).
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